Sparse finite elements for elliptic problems with stochastic loading

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp - Finite Elements for Elliptic Eigenvalue Problems

Convergence rates for finite element discretisations of elliptic eigenvalue problems in the literature usually are of the form: If the mesh width h is fine enough then the eigenvalues resp. eigenfunctions converge at some well-defined rate. In this paper, we will determine the maximal mesh width h0 — more precisely the minimal dimension of a finite element space — so that the asymptotic converg...

متن کامل

Mixed Finite Elements for Elliptic Problems with Tensor Coeecients as Cell-centered Finite Diierences Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-centered Finite Differences

We present an expanded mixed nite element approximation of second order elliptic problems containing a tensor coeecient. The mixed method is expanded in the sense that three variables are explicitly approximated, namely, the scalar unknown, the negative of its gradient, and its ux (the tensor coeecient times the negative gradient). The resulting linear system is a saddle point problem. In the c...

متن کامل

High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales

Elliptic homogenization problems in a domain Ω R d with n + 1 separate scales are reduced to elliptic problems in dimension (n + 1)d. These one-scale problems are discretized by a sparse tensor product finite element method (FEM). We prove that this sparse FEM has accuracy, work, and memory requirements comparable to those in a standard FEM for singlescale problems in Ω, while it gives numerica...

متن کامل

High Dimensional Finite Elements for Elliptic Problems with Multiple Scales and Stochastic Data

Multiple scale homogenization problems are reduced to single scale problems in higher dimension. It is shown that sparse tensor product Finite Element Methods (FEM) allow the numerical solution in complexity independent of the dimension and of the length scale. Problems with stochastic input data are reformulated as high dimensional deterministic problems for the statistical moments of the rand...

متن کامل

Sparse second moment analysis for elliptic problems in stochastic domains

We consider the numerical solution of elliptic boundary value problems in domains with random boundary perturbations. Assuming normal perturbations with small amplitude and known mean field and two-point correlation function, we derive, using a second order shape calculus, deterministic equations for the mean field and the two-point correlation function of the random solution for a model Dirich...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2003

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-003-0455-z